
Journal of Computational Physics 218 (2006) 324–332

www.elsevier.com/locate/jcp
Basis selection in LOBPCG

U. Hetmaniuk *, R. Lehoucq

Sandia National Laboratories, Computational Mathematics and Algorithms Department, P.O. Box 5800, MS 1110,

Albuquerque, NM 87185, United States1

Received 21 October 2005; received in revised form 19 January 2006; accepted 14 February 2006
Available online 31 March 2006
Abstract

The purpose of our paper is to discuss basis selection for Knyazev’s locally optimal block preconditioned conjugate
gradient (LOBPCG) method. An inappropriate choice of basis can lead to ill-conditioned Gram matrices in the Ray-
leigh–Ritz analysis that can delay convergence or produce inaccurate eigenpairs. We demonstrate that the choice of basis
is not merely related to computing in finite precision arithmetic. We propose a representation that maintains orthogonality
of the basis vectors and so has excellent numerical properties.
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1. Introduction

Knyazev’s locally optimal block preconditioned conjugate gradient (LOBPCG) method [7] is a recent
approach for the numerical solution of the large-scale generalized symmetric positive definite eigenvalue
problem
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where A and M are symmetric positive definite matrices. In combination with a symmetric positive definite
preconditioner, recent papers [2,10] showed that LOBPCG is a powerful algorithm for computing approxima-
tions to the smallest eigenvalues and eigenvectors.

LOBPCG minimizes the Rayleigh quotient of (1) by performing a Rayleigh–Ritz analysis with the subspace
S spanned by X and X�, the blocks of current and previous iterates, and H, the block of preconditioned resid-
uals. A Rayleigh–Ritz analysis computes the new block of iterates X+ whose span provides approximation to
the smallest eigenvectors of (1).
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The choice of basis for S is important numerically. Early versions of LOBPCG used the representation
[X,H,X�]. This basis often led to ill-conditioned Gram matrices in the Rayleigh–Ritz analysis that produced,
according to Knyazev [7], spurious eigenpairs. This ill-conditioning stems from the convergence of X and X�

towards the same eigenvectors of (A,M). The goal of our paper is to discuss the impact of basis selection. We
demonstrate that the choice is not merely related to computing in finite precision arithmetic. We also propose
a representation that appears to have excellent numerical properties.

Our paper is organized as follows. In Section 2, we review the LOBPCG algorithm and we justify why,
through the Rayleigh–Ritz analysis, the choice of basis for S is important. Then Section 3 presents examples
that require special care in the basis selection. Finally, Section 4 proposes a representation and we illustrate its
efficiency on a numerical problem.
2. Overview of LOBPCG

First we introduce some notation:

� N is a symmetric positive definite preconditioner for the matrix A.
� nev denotes the number of eigenpairs to compute.
� (Y,H) = RR(S,b) performs a Rayleigh–Ritz analysis where the pencil (STAS,STMS) has eigenvectors Y

and eigenvalues H, i.e.,
STASY ¼ STMSYH and YTSTMSY ¼ Ib�b;
where Ib·b is the identity matrix of size b · b. The first b pairs with smallest Ritz values are returned in Y and in
the diagonal matrix H in a non-decreasing order.
2.1. Algorithmic description

Algorithm 1 provides a pseudocode for LOBPCG. For an efficient implementation of LOBPCG, we refer
the reader to [10]. In particular, the matrices A, M, and N can be accessed only once per iteration by storing
the blocks of vectors: Xk, AXk, MXk, HI, AHI, MHI, PI, API, MPI, and RI. For a version where the blocksize
of Xk is independent from nev, we refer the reader to [2].

Algorithm 1 (LOBPCG).

1. Select an initial guess ~X 2 Rn�nev.
2. X0 ¼ ~XY where ðY;H0Þ ¼ RRð~X; nevÞ.
3. RI = AX0 �MX0H0.
4. PI = [ ].
5. For k = 0,1,2,� � � do
6. Solve the preconditioned linear system NHI = RI.
7. Let S = [Xk,HI,PI] and compute (Y,Hk+1) = RR(S,nev).
8. Xk+1 = [Xk,HI,PI]Y.
9. R = AXk+1 �MXk+1Hk+1.

10. Set RI with the unconverged columns of R.
11. Set YI with the columns of Y associated with the unconverged columns of R.
12. PI = [0,HI,PI]YI.
13. end For.
At the kth iteration, LOBPCG minimizes the Rayleigh quotient on the subspace S spanned by [Xk,HI,
Xk�1]. Knyazev [7] noticed that the span of [Xk,HI,PI] is a subspace in the span of [Xk,HI,Xk�1]. The columns
of the former matrix are better conditioned than the columns of the latter matrix. So, in Algorithm 1, the sub-
space S uses the representation [Xk,HI,PI]. We remark that the number of columns in HI and PI decrease as
the columns of Xk converge. Knyazev and Argentati [8] call this technique soft-locking.
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Through the function RR, the Rayleigh–Ritz analysis computes approximations to the eigenvalues of
(A,M). This analysis also guarantees the M-orthonormality of the block Xk+1. Indeed, we have
XT
kþ1MXkþ1 ¼ YTSTMSY ¼ Ib�b
by definition of the function RR. So the Rayleigh–Ritz analysis is important for LOBPCG. In the following
section, we will show that the choice of basis for S is important for the Rayleigh–Ritz analysis.

2.2. Comments on the Rayleigh–Ritz analysis

When the basis for S is ill-conditioned, inaccurate eigenpairs originate in the Rayleigh–Ritz step. We give
two explanations for the origin of this inaccuracy.

The first one is theoretical. For any full-column rank matrix S, we can pair any Ritz value hj for the pencil
(STAS,STMS) with an eigenvalue kj0 of (A,M) such that
jkj0 � hjj 6
kAS�MSL�1ðSTASÞL�TkM�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kminðSTMSÞ
q ; ð2Þ
where L is the Cholesky factor of STMS and kmin(STMS) is the smallest eigenvalue of STMS. This result is
proved in Parlett [12, see Theorem 11.10.1]. In other words, the bound (2) shows that the accuracy of a Ritz
value degrades as the columns of S depart from M-orthonormality.

The second reason is numerical. In practice, the generic function RR calls the LAPACK routine DSYGV
[1]. This routine computes a Cholesky factorization,
STMS ¼ LLT;
and the eigenpairs (zj,hj) of the transformed matrix L�1(STAS)L�T. The algorithm DSYGV is known to be
numerically unstable when STMS is ill-conditioned. The computed eigenvalues hj can differ from the true
eigenvalues ĥj by at most
jĥj � hjj 6 CekðSTMSÞ�1k2 kS
TASk2 þ jĥjjkSTMSk2

� �
ð3Þ
(see [1] for further details) and the Ritz vectors yj,
yj ¼ L�Tzj;
may not be orthogonal to machine precision. Indeed, even if the eigenvectors zj are orthonormal to machine
precision,
zT
i zj ¼ OðeÞ ði 6¼ jÞ;
the vectors yj satisfy
yT
i STMSyj ¼ O ejðSTMSÞ

� �
ði 6¼ jÞ; ð4Þ
where j(STMS) is the condition number of the Gram matrix STMS.
To illustrate the sharpness of (4), we consider the pencil (In·n,Hilb(n)), where Hilb(n) is the Hilbert matrix of

size n. We compute the associated eigenpairs (yj,hj) with the routine eig of Matlab [11], using the Cholesky
factorization of the Hilbert matrix. In Fig. 1, we plot the maximum error in orthogonality,
max
i6¼j
jyT

i HilbðnÞyjj;
and this maximal error scaled by the condition number of the Hilbert matrix,
maxi6¼jjyT
i HilbðnÞyjj

jðHilbðnÞÞ ;
when the size n increases. We note that the maximal error scaled by the condition number remains bounded
when the size n increases.



2 3 4 5 6 7 8 9 10 11 12
10 20

10 18

10 16

10 14

10 12

10 10

10 8

10 6

10 4

10 2

Size of pencil

Orthogonality error

Orthogonality error scaled by condition number

Fig. 1. Orthogonality error of eigenvectors for the pencil (In·n,Hilb(n)).
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So ill-conditioning in the matrix S can produce, through the routine DSYGV, inaccurate eigenpairs. One
solution is to selectively discard columns of S to improve the conditioning of the basis. Unfortunately, when
doing so, the convergence of LOBPCG is delayed because the Rayleigh quotient is not minimized on the larg-
est available subspace. Furthermore, the criterion for selectively discarding is empirical—there exists no the-
oretical justification. In [10], the authors suggest discarding the search directions PI. However, the block of
vectors [Xk,HI] may remain ill-conditioned.

Another solution is to replace the LAPACK routine DSYGV with an efficient and backward stable algo-
rithm for the Rayleigh–Ritz analysis. Unfortunately to the best of our knowledge, such an algorithm, which
would also exploit the symmetry of symmetric generalized eigenproblems, has yet to be implemented. Chandr-
asekaran [3] and Davies et al. [4] have proposed potential solutions but without proving the optimality of their
algorithm. Consequently, for the remainder of this paper, we assume that the function RR calls the LAPACK
routine DSYGV.

In the following section, we present simple examples where the representation [Xk,HI,PI] is singular or ill-
conditioned.

3. Examples of problematic [Xk,HI,PI]

3.1. Initial guess from a Krylov space

We assume that the preconditioner is the identity matrix. Let U be a full-column rank block of b vectors
such that U and A�1MU are linearly independent. Using the notation of Algorithm 1, we define the following
blocks of vectors:
~X ¼ ½U;A�1MU�;
X0 ¼ ~XY; where ðY;H0Þ ¼ RRð~X; 2bÞ;
RI ¼ AX0 �MX0H0.
The rank of X0 is in general 2b. On the other hand, we can prove that the rank of RI is at most b. We rewrite
the residual as follows:
RI ¼ A~X�M~XYH0Y�1
� �

Y ¼ A~X�M~Xð~XTM~XÞ�1ð~XTA~XÞ
� �

Y.
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With the definition of ~X, we have
where 0b·b is the zero matrix of size b · b. And so we obtain
RI ¼ ½eR; 0n�b�Y;

which proves that the rank of RI is at most b. Therefore, the representation [X0,RI] is not of full-column rank
and the routine DSYGV will fail because of this rank deficiency.

We note that a similar rank deficiency appears for the initial guess [U,M�1AU]. On the other hand, when
the initial guess is set to [U,A�1MU + eV], where e is a small parameter, the representation [X0,RI] will be
ill-conditioned.
3.2. Rank deficient HI

We assume that the matrices A and M arise from the finite element discretization of the Laplace equation
with homogeneous Dirichlet boundary condition on the unit square. We use piecewise bilinear finite elements
on an uniform orthogonal grid. In each coordinate direction, we define m interior grid points. The resulting
matrices are of size n = m2 and, with a lexicographical ordering of the grid points, have a bandwidth of m.

Let In·b be the first b columns of the identity matrix. Using the notation of Algorithm 1, we define the initial
guess
~X ¼ In�b.
The rank of X0 is b, while the rank of HI is at most min(b,m) because of the lexicographical ordering of the
grid points. Therefore, the representation [X0,HI] is not of full-column rank. For the Rayleigh–Ritz analysis,
the Cholesky factorization in the routine DSYGV will fail.

We note that the following initial guess:
In�b þ
0b�b

eV

� �
;

where e is a small parameter, results in an ill-conditioned [X0,HI].
3.3. Rank deficient [Xk+1,PI]

From Algorithm 1, we remark that the new iterates Xk+1 and the updated search directions PI are related. If
we assume no convergence (Y = YI) and we partition Y as follows:
Y ¼ YX;YH;YP½ �T;

then the updated search directions PI satisfy
PI ¼ Xkþ1 � XkYX.
Consequently, the block [Xk+1,PI] is ill-conditioned when the update matrix YX has columns with small norm.
We can generate such an example with a random initial guess ~X (nev = 1) and the following matrices:
A ¼

1 0 0 0 0

0 2 0 0 0

0 0 3 0 0

0 0 0 4 0

0 0 0 0 5

2
6666664

3
7777775
; N ¼

108 0 0 0 0

0 2 0 0 0

0 0 3 0 0

0 0 0 4 0

0 0 0 0 5

2
6666664

3
7777775

ð5Þ
and the matrix M is equal to the identity matrix. For this particular case, the smallest singular value of [X1,PI]
will be of order 10�8 and the conditioning of
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½X1;HI ;PI �TM½X1;HI ;PI �

is of order 1016.

3.4. An eigensolver as preconditioner

Let us drop the requirement that N is symmetric positive definite for this section only. A general approach
to solve a linear system iteratively is to use the conjugate gradient algorithm preconditioned by a few iterations
of a Jacobi or Gauss–Seidel method. Therefore, we propose in this section to use as a preconditioner a simple
eigensolver.

This simple eigensolver will consist of one step of a Rayleigh–Ritz analysis on the subspace spanned by
[Xk,RI], i.e., we set the block HI to
HI ¼ ½Xk;RI �W; where ðW;UÞ ¼ RRð½Xk;RI �; nevÞ.

The resulting representation [Xk,HI,PI] will quickly become ill-conditioned because the blocks Xk and HI will
converge to the same eigenvectors of the pencil (A,M).

All these examples demonstrate that the potential linear dependencies are not merely related to computing
in finite precision arithmetic. Knyazev [7] notes also that when M is ill-conditioned and a high accuracy is
required (i.e., small residual norm), the Rayleigh–Ritz analysis may generate an ill-conditioned Gram matrix
STMS. Consequently, the representation [Xk,HI,PI] is not robust. In the following section, we propose a
solution that defines an M-orthonormal basis.

4. A robust representation

4.1. Algorithmic modifications

First, we introduce the orthonormalization function ORTHO such that for any symmetric positive definite
matrix M, any input matrix W of size n · b, and any input matrix Q of size n · q, the output matrix V
V ¼ ORTHOðM;W;QÞ

is of size n · b and satisfies:
VTMV ¼ Ib�b;

VTMQ ¼ 0b�q;

RangeðVÞ � RangeðWÞ.
We emphasize that the matrix V is of full-column rank and that its range contains the range of the input ma-
trix W. For an efficient block implementation of ORTHO, we refer the reader to Stathopoulos and Wu [13],
where they use exclusively level 3 BLAS [5] and LAPACK [1] routines.

The modifications to build an M-orthonormal basis in LOBPCG are described in Algorithm 2. They consist
in adding two calls to the function ORTHO.

Algorithm 2 (LOBPCG with an M-orthonormal basis).

1. Select an initial guess ~X 2 Rn�nev.
2. X0 ¼ ~XY where ðY;H0Þ ¼ RRð~X; nevÞ.
3. RI = AX0 �MX0H0.
4. PI = [].
5. For k = 0,1,2,� � � do
6. Solve the preconditioned linear system N eH ¼ RI .
7. HI ¼ ORTHOðM; eH; ½Xk;PI �Þ.
8. Let S = [Xk,HI,PI] and compute (Y,Hk+1) = RR(S,nev).
9. Xk+1 = [Xk,HI,PI]Y.

10. R = AXk+1 �MXk+1Hk+1.
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11. Set RI with the unconverged columns of R.
12. Set ~Y ¼ ½~YX; ~YH; ~YP�T with the columns of Y associated with the unconverged columns of R.
13. YI ¼ ORTHOðSTMS; ½0; ~YH; ~YP�T;YÞ.
14. PI = [Xk,HI,PI]YI.
15. end For.
The first call to ORTHO explicitly orthonormalizes the block HI against the current iterate Xk and the
search directions PI. This function requires a minimum of one application of the matrix M and floating-point
operations are of order Oðn � nev2Þ þ Oðnev3Þ. In comparison to Algorithm 1, the M-orthonormalization is an
additional cost. However, Algorithm 2 can replace the matrix STMS with the identity matrix and so avoid
computing STMS (which is also Oðn � nev2Þ).

The second call to ORTHO implicitly orthonormalizes the block PI against the current iterate Xk+1.
Indeed, we have:
XT
kþ1MPI ¼ YTSTMSYI ¼ 0nev�nev;

PT
I MPI ¼ YT

I STMSYI ¼ Inev�nev
by definition of the function ORTHO. This second call to ORTHO does not involve the matrix M nor the
blocks of vectors Xk+1 and PI. The number of floating-point operations performed is Oðnev3Þ. When n� nev,
this additional cost is negligible in comparison, for instance, to the update step,
PI ¼ ½Xk;HI ;PI �YI ;
which requires Oðn � nev2Þ operations.
These modifications do not modify the subspace S where the Rayleigh quotient is minimized. Conse-

quently, when the matrix S is well-conditioned, convergence properties remain unchanged. Algorithm 2 does
not depend on a heuristic criterion but instead upon a robust and stable procedure for orthogonalizing blocks
of vectors. With an M-orthonormal basis, the Rayleigh–Ritz analysis is now performed on a subspace of max-
imal size because the representation [Xk,HI,PI] is always of full-column rank.

In [10], the authors discard the search directions PI to handle ill-conditioned STMS matrices. This choice
appears helpful for their particular experiments but, as pointed out in Section 2.2, no theoretical justification
exists. Moreover, the block of vectors [Xk,HI] can still remain ill-conditioned (see Section 3). Finally, discard-
ing search directions can delay the convergence of LOBPCG because the Rayleigh–Ritz analysis is not
performed with all available information.

We could reorganize Algorithm 2 so that only one call to ORTHO is made. Such a reorganization would
eliminate Steps 13 and 14 and replace Step 7 as follows:
½HI ;PI � ¼ ORTHOðM; ½ eH; ~P�;XkÞ;

where ~P is defined as
~P ¼ ½Xk;HI ;PI �½0; ~YH; ~YP�T.
However, when n� nev, a formulation with one call to ORTHO requires more floating-point operations than
Algorithm 2 because Step 13 works only with vectors of length at most 3nev. For the remainder of the paper,
we consider only Algorithm 2.

The algorithm with an M-orthonormal basis does not fail on the examples described in Section 3. Next, we
illustrate the numerical performance of this modified algorithm on a practical engineering problem.
4.2. Numerical experiment

This example stems from an homogeneous linear elastic problem. The pencil (A,M) is of order n = 48,000.
These matrices result from the finite element discretization of an elastic tube. The mesh has 16,080 vertices and
is depicted in Fig. 2. Homogeneous Dirichlet boundary conditions are enforced on the outer left radial face.
The matrix A has 3,218,400 non-zero entries and so does the matrix M.



Fig. 2. Mesh for the elastic tube model.
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The codes are implemented in C++, using the Trilinos [6] project. This project provides, through a collec-
tion of classes, the algebraic operations and several preconditioners.

A strength of LOBPCG is the ability to use black-box preconditioning of the matrix A (black-box means
that the preconditioner N is available only as a function performing N�1R—see [9] for further details). For
our experiments, we choose a smoothed aggregation algebraic multigrid (AMG) preconditioner [14].

We compute the first 4 and the first 16 eigenpairs of the pencil (A,M), using Algorithms 1 and 2. We use the
same initial guess for both algorithms, which is generated randomly. A pair (x,h) is considered converged
when the criterion
kAx�Mxhk2

kxkM

6 h � 10�6
is satisfied.
When computing the first 4 eigenpairs, Algorithms 1 and 2 converge with the same number of iterations.

Algorithm 2 is more expensive because of the M-orthonormalizations. For this particular example, the addi-
tional cost increased the CPU time by 20% on a 1 GHz PowerPC G4 with 1 GB of memory.

On the other hand, when computing the first 16 eigenpairs, Algorithm 1 builds several ill-conditioned
STMS matrices during the iteration loop. In particular, the basis [X1,PI] is extremely ill-conditioned
(j([X1,PI]) 	 1018). The number of iterations is then much larger than when using Algorithm 2. For this par-
ticular example, the number of iterations with Algorithm 1 is almost three-times larger (64 iterations versus
189 iterations). Because of this slower rate of convergence, the CPU time of Algorithm 2 is much less than
that of Algorithm 1.

We repeated the experiments with several random initial guesses. The conclusions remained unchanged. We
varied also the number of eigenpairs requested. When computing up to the first 12 eigenpairs, the two algorithms
converge with similar number of iterations. When computing more than the first 12 eigenpairs, Algorithm 1
builds several ill-conditioned STMS matrices during the iteration loop and requires more iterations.

When using black-box preconditioners for engineering problems, we cannot define relationships between
Xk, HI, and PI that guarantee a well-conditioned matrix S. Therefore, we believe that Algorithm 2 is a robust
solution that guarantees a well-conditioned matrix S.

5. Conclusions

For LOBPCG, the choice of basis for S is important numerically. An inappropriate choice of basis can
lead to ill-conditioned Gram matrices in the Rayleigh–Ritz analysis that can delay the convergence or produce
inaccurate eigenpairs. Practical examples can generate rank-deficient or ill-conditioned representations
[Xk,HI,PI] for the subspace S.



332 U. Hetmaniuk, R. Lehoucq / Journal of Computational Physics 218 (2006) 324–332
In order to perform an accurate Rayleigh–Ritz analysis on the subspace S, we propose computing an M-
orthonormal basis. This solution depends only upon a robust and stable procedure for orthogonalizing a
block of vectors. Such an M-orthonormal basis provides an accurate Rayleigh–Ritz analysis because the
matrix STMS is never singular nor ill-conditioned.

This orthonormalization has of course a cost, which can appear at first pointless for simple problems. How-
ever, this M-orthonormal representation is robust and theoretically justified. For challenging engineering
problems, this solution results in a robust algorithm and may reduce the total number of iterations so leading
to a more efficient algorithm.
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